
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 5, MARCH 1, 2014 1157

MMSE Design of Time and Color
Multiplexing Codes

Tsung-Han Chan, Kui Jia, Eliot Wycoff, and Yi Ma

Abstract—Illumination multiplexing has proven itself to be a
valuable tool in image quality improvement for many computer
vision and graphics applications, provided that its limitations
on photon noise and saturation are properly tackled. Currently,
multiplexing codes are constructed according to the maximum
signal-to-noise ratio (SNR), and they are primarily employed
for time multiplexing, a technique that requires the number
of measurements to be equal to the number of illumination
sources . In this work, we propose an illumination multiplexing
method based on minimum mean square errors (MMSEs) for
the more general setting of both time and color multiplexing
performed together, with , where is the number
of color channels. Under the umbrella of the proposed MMSE
formulation, the conventional maximum SNR approach can be
thought of as a special case of the MMSE design. The formulated
MMSE problem is a difficult non-convex problem, but it can be
approximated by sequential semi-definite (convex) programming
and a 1-D exhaustive search. The proposed formulation and
algorithm can be readily specialized to max-SNR and/or time
multiplexing designs, thereby giving the optimized codes a much
broader scope of application. Computer simulations show that
the conventional max-SNR design is suboptimal to the proposed
MMSE design, though both see significant quality improvements
as increases. Experiments also demonstrate the effectiveness
and superiority of the proposed method in illuminating various
objects.

Index Terms—Optical multiplexing, maximum signal-to-noise
ratio (SNR), minimum mean square error (MMSE), sequential
convex approximation, time and color.

I. INTRODUCTION

O PTICAL multiplexing can be traced back to the late
1970s to the field of spectrometry [1] in which studies

were performed with a single detector simultaneously receiving
signals from disparate spectral bands that had been previously
encoded. The goal of multiplexing is to improve the quality
of demultiplexed, single spectral band signals. An analogous
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multiplexing concept was brought into the domain of com-
puter vision and graphics by Schechner et al. in 2003 [2]; in
this work, objects were illuminated by multiple sources from
different directions, and the resulting images were computa-
tionally demultiplexed with the intent of acquiring single-light
source images of maximum signal-to-noise ratio (SNR)1.
This max-SNR multiplexing scheme was later employed in
numerous applications, such as scene recovery [3], object
relighting [4], and photometric stereo [5]–[7], and it has proven
to be valuable in SNR improvement.
The SNR boost for single-light source images is expected to

have a positive impact on computer vision applications such as
face recognition [8] in which gathering training face images
under arbitrary illuminations via multiplexing is expected to
improve recognition rates. In photometric stereo [6], [7], es-
timating the surface normals of objects from demultiplexed,
single-light source images can substantially aid in object recog-
nition and 3-D modeling. Moreover, a large number of single-
light source images of a scene can be used to create a new
image with arbitrary lighting conditions. Multiplexed illumi-
nations with the relighting technique further help in film post-
production [5]; e.g., the lighting and reflectance of the actor
can be designed and modified after the film was shot. How-
ever, illumination multiplexing is not always favorable in im-
proving image quality. When considering photon noise along
with sensor noise, multiplexing multiple light sources may be
counterproductive [9]. Present efforts for designing max-SNR
multiplexing codes in the presence of both sensor noise and
photon noise include [9]–[11], but they are limited to timemulti-
plexing systemswhere the number ofmeasurements equals
the number of illumination sources . Some questions then
arise: what can we gain frommultiplexing if the number of mea-
surements is larger than the number of illumination sources
? How can the multiplexing codes be designed to include

color multiplexing in addition to time multiplexing? And fur-
ther, are there any relevant code design criteria apart from a
maximum SNR?
Present efforts have partially addressed the aforementioned

limitations of optical multiplexing. Alterman et al. [12] relaxed
the limitation that for max-SNR multiplexing for mul-
tiplexed fluorescence unmixing, but their problem design addi-
tionally has to take into account the natural mixing in fluorescent
images, which does not fall into the scope of this paper. More-
over, many existing works have utilized time and color multi-

1The conventional maximum-SNR approach can be shown to be a type of
constrained Minimum Mean Square Errors (MMSE) problem; see Section II.
To differentiate it from the generic MMSE design, we keep its name as it is
throughout the paper.
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plexing for various purposes, for instance: [4] employing cyan,
magenta and yellow patterns for the illumination of the faces of
mannequins; [13] using a cluster of light sources with different
spectra and an RGB camera for multispectral imaging; [14] ex-
tending time multiplexing with color multiplexing for the cap-
ture of dynamic scenes; and [6] utilizing time and color mul-
tiplexing for dynamic photometric stereo. Nonetheless, hardly
any information exists on how such necessary time and color
multiplexing codes could have been optimally constructed.
In this paper, we propose a design of time and color multi-

plexing codes using the MinimumMean Square Error (MMSE)
criterion for the more general setting of , where
denotes the number of color channels and, for example,
for the case of an RGB color camera. The optimal multi-

plexing code design problem takes into account the presence
of sensor noise and photon noise, as well as the saturation chal-
lenge [10], and it can be formulated into a constrained optimiza-
tion problem. Since the formulated problem unfortunately turns
out to be non-convex, we then propose a systematic method,
which we call the Illumination Multiplexing Codes (IMC) algo-
rithm, that approximates the problem by sequential convex pro-
gramming and a 1-dimensional exhaustive search. The proposed
MMSE formulation and algorithm can be readily specialized
to the problem of conventional max-SNR design and/or time
multiplexing, thereby giving codes optimized in such a fashion
as to yield a much broader application. Simulations show the
merits of our approach: first, theMMSE design yieldsmoremul-
tiplexing gain than the conventional max-SNR design, and both
significantly improve image quality as increases; and second,
a fewer number of measurements, say , used in time and
color multiplexing is sufficient for achieving equal performance
when using time multiplexing. The second advantage im-
plies that one could reduce the number of acquisitions by using
more color channels, and this could benefit applications where
the number of acquired images should be as few as possible,
such as dynamic photometric stereo [6]. Our experiments show
the effectiveness and superiority of the proposed approach in
illuminating various objects, such as Lambertian and non-Lam-
bertian objects.
This paper is based on our conference paper [15] that tackles

the design of multiplexing code based on the max-SNR crite-
rion. The main differences are summarized as follows.
• We provide a new MMSE criterion formulation, under
which the conventional max-SNR approach [1], [2], [4],
[10]–[12] is viewed as a constrained MMSE problem.

• TheMMSE-based formulated problem is more general and
more difficult than the max-SNR problem [15]. Some ad-
ditional reformulations and approximations are presented.

• A convergence analysis of the proposed IMC algorithm
is discussed, and some pros and cons of the MMSE and
max-SNR designs are also elaborated.

• Simulations and experiments with both MMSE and
max-SNR designs are conducted. The results show the su-
periority of the MMSE design over the max-SNR design.

• Objects with Lambertian and non-Lambertian surfaces are
used in object illumination experiments.

Organization of this paper: In Section II, we review the back-
ground of time multiplexing as well as related work. Section III

Fig. 1. Illustration of time multiplexing with single-light sources: an
object is viewed under varying illumination directions encoded by the elements
of . The row vectors of correspond to different illumination multiplexing
conducted at different time instances. An element of each row of , ranging
from 0 to 1, controls the brightness of the corresponding light source.

presents how we use the MMSE criterion to design time and
color multiplexing codes and to develop the IMC algorithm.
Section IV presents the specialization of the IMC algorithm to
max-SNR multiplexing. In Section V, we present some sim-
ulation results that demonstrate the viability of the proposed
MMSE design and its algorithms and their advantages rela-
tive to some other existing algorithms. Section VI gives ex-
perimental results with the proposed approach for various ex-
amples of object relighting. Finally, conclusions are drawn in
Section VII.

II. BACKGROUND OF TIME MULTIPLEXING

In this section we briefly review the background of time mul-
tiplexing from a general-to-specific perspective, and we intro-
duce some related work. To begin with, let us consider the sce-
nario in which a static object with Lambertian surfaces is illu-
minated by multiple (say ) diverse single light sources using
a time-multiplexed scheme, and let each light source have its
own direction from which it illuminates a surface patch of the
object. Assuming there are distinct multiplexed illuminations
in total, the captured intensity value at pixel can be represented
by the linear superposition model,

(1)

where is a vector containing the captured
light intensity for different multiplexed illuminations
at pixel is a time multiplexing matrix,

denotes a vector comprised of
the intensities of the reflected light at the th pixel under
different single light source conditions, is

the measurement noise, and is the total number of image
pixels. The 1-dimensional pixel index results from a vector
transformation of the 2-dimensional image coordinates. Fig. 1
illustrates how time multiplexing is applied to a real scenario.
Time multiplexing in (1) can use either a switching2 or a non-

switching strategy. We use the non-switching strategy, where
the elements of the matrix range over the entire interval from
0 to 1:

(2)

2The elements of are binary, belonging to either 0 or 1.
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Here denotes the componentwise inequality for vectors and
the linear matrix inequality for matrices, denotes the
vectorization operator, is the -dimensional vector whose
entries are each equal to 1, and is the zero vector of proper
dimension. To clarify, the notation is the all-one vector of
dimension . The extreme values 0 and 1 stand for the cor-
responding light source being completely turned off and turned
on, respectively. The values of depend on the rel-
ative positions, orientation and visibility of the object and its
light sources. In addition, the noise is assumed to be inde-
pendent and identically distributed (i.i.d.) with zero mean and a
covariance matrix satisfying the affine noise model [4], [16]:

(3)

where denotes the variance of the signal-independent sensor
noise, denotes the variance of the signal-dependent photon
noise, is the identity matrix, and is the total energy
of the activated light sources at each measurement. The value
of has a direct connection to the time multiplexing matrix ,
with the multiplexing power used in each measurement being
equal to :

(4)

The goal is to jointly devise both the multiplexing matrix
and the demultiplexing matrix such that the demul-
tiplexed, single light source illuminations

(5)

have minimum mean square errors (MMSE) with respect to
, denoted by

(6)

(7)

where is the trace operator, is the expectation operator,
and stands for the (positive semi-definite)
correlation matrix of the demultiplexed images. Here, the de-
multiplexed images and the noise are assumed to be statistically
mutually independent; i.e., . By defining the
feasible set of from (2) and (4)

(8)

the design of the multiplexing codes is equivalent to solving the
following constrained optimization problem:

(9)

Compared to the scenario with single-source acquisition, i.e.,
, the time multiplexing gain is easily computed to be

(10)

where is given by (3) with .
Problem (9) is a difficult non-convex problem. Early efforts

[1], [2], [4], [10]–[12] primarily focused on handling theMMSE
problem (9) with the added constraint of :

(11)

Here we use to differentiate the solution of (11) from the op-
timal solution of the generic MMSE problem, denoted as . In
such a case, the unique solution of the demultiplexing matrix
can be easily determined to be , as and are
both square. Hence, problem (11) can be further simplified to

(12)

Clearly, the above problem minimizes the sum of the noise
power in (from (5)) or, equivalently,
maximizes its signal-to-noise ratio (SNR). Problem (12)
originates from a constrained MMSE formulation, but to dif-
ferentiate the general MMSE design (9), we name this instance
as the maximum-SNR design. From (10), the multiplexing gain
for the max-SNR design is then computed as

(13)

A. Related Work

Present efforts for handling the max-SNR problem (11) were
briefly reviewed, and they have been categorized by the condi-
tions under which the following methods were developed.
1) Absence of Photon Noise: Optical multiplexing tech-

niques were first investigated in the field of spectrometry [1].
The optimal multiplexing codes for problem (12) have been
shown to be the S-matrix [1], [2], [4] where photon noise is
absent, i.e., . The S-matrix can be readily constructed
based on the Hadamard codes of length for some such
that is an integer. Hadamard multiplexing is a switch
multiplexed method that completely turns on
light sources during each measurement. Using Hadamard
multiplexing, the multiplexing gain is
[1]. Thus it is clear that by using multiplexing the greater the
number of illumination sources , the better the obtained
image quality will be.
2) Presence of Photon Noise: When photon noise comes into

play, Hadamard multiplexing is no longer optimal [5]. Mutting
[9] looked into the effect of photon noise on Hadamard mul-
tiplexing and derived new multiplexing codes based on two-
level autocorrelation sequences. These multiplexing codes have
shown their advantages when there is photon noise, but they are
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only available for a very limited set of values of and for a
limited range of noise variances . Thus, Ratner et al.
[10] constructed new time multiplexing codes for any and
noise variance . They handled problem (12) for a given
by using the projected gradient method which, unfortunately,

is easily susceptible to getting stuck in the local optima during
the solution search; hence, they also devised a higher level opti-
mization procedure for the method to escape from local optima
[10]. After collecting all the optimal objective values of problem
(12) for all of the ’s, the optimal was then selected to be
the one with the minimum objective value.
3) Saturation: Saturation is another problem encountered

during illumination multiplexing, and it tends to occur when
the object of interest is illuminated by numerous light sources.
When the captured image intensity is saturated—that is, the
linear superposition model (1) is violated—one should either re-
duce the exposure time or decrease the total energy for each
measurement. [2] and [4] have proven that the latter is better
than the former. Thus, to counter the saturation issue, Ratner et
al. have added the constraint,

(14)

where is the threshold beyond which the captured image
becomes saturated.
Despite the success of the above methods for problem (11),

there still remain some notable limitations:
• The current optimal multiplexing codes are limited to time
multiplexing only.

• The current multiplexing system must be a determined
system, i.e., and .

• There are no available methods for handling the MMSE
design problem (9), a problem which, in principle, will
yield a multiplexing gain larger than or equal to that of the
max-SNR design.3

Thus, some natural questions arise. First, can the code-design
problem for time multiplexing be extended to that of both
time and color multiplexing? Second, what happens if the
multiplexing system captures a greater number of measure-
ments? And third, can one develop a method for handling the
MMSE design problem (9)? In the next section, we formulate
an MMSE design problem for a time and color multiplexing
system without requiring . Some advantages of em-
ploying the MMSE design for over-determined time and color
multiplexing systems will also be shown and discussed.

III. THE MMSE DESIGN OF TIME AND COLOR
MULTIPLEXING CODES

Time and color multiplexing has been utilized for relighting
[4], multispectral imaging [13], and image capturing under
varying illumination conditions [6], [14]; but none of these
applications specifically elaborate how to optimally devise the
time and color multiplexing codes whether they be based on
the MMSE or max-SNR criteria. In this section, we introduce a
model for time and color multiplexing, and we present how the
MMSE codes for time and color multiplexing can be designed.

3Since the constraint set of (11) is a subset of (9), the MMSE design would
yield a that leads the MSE to be smaller than that of
the max-SNR design.

The formulation and the algorithm can then be easily tailored
to time multiplexing.
Time and color multiplexing is a natural extension of time

multiplexing alone. Noticeable difference lies in that three ele-
ments corresponding to red, green, and blue channels are used
to control the color and brightness of each light source. As re-
ported in [14], the captured time-multiplexing images of a static
Lambertian object via RGB channels should fulfill the following
linear superposition model:

(15)

where denote the time mul-
tiplexed image intensity at pixel , recorded via red,
green, and blue channels, respectively;

represent illumination-independent, normalized
RGB intensities of the material at image pixel sat-
isfying

are the time-multiplexing matrices
for the red, green, and blue channels, respectively;
corresponds to the various single-light source illuminations
at pixel ; and denote the noise
measured in the RGB channels, respectively. The noise co-
variance matrices for RGB channels are usually diverse,
depending on the specification of the color camera used, i.e.,

. Noise correlations across
the RGB channels4, caused by the Bayer filter and color inter-
polation, are assumed to be modelled as a function of ; i.e.,

for and . Also, the material
colors and the noise covariance matrices can be practically
acquired in the camera calibration phase, and they are assumed
to be known hereafter. The details of how to estimate those
parameters can be found in Section VI-A.
We first reformulate the model in (15). Moving the effects

of the material colors into
the noise term, and stacking the RGB counterparts as a column
vector, we obtain

(16)

where is
the time and color multiplexing matrix, and

is
the noise with the following covariance matrix,

(17)

Assuming that , the demultiplexed single-source
illumination , can be written as

(18)

4Any sophisticated model of the noise correlation across RGB channels is
applicable to the following proposed algorithm, as long as it can be explicitly
expressed as a function of .



CHAN et al.: MMSE DESIGN OF TIME AND COLOR MULTIPLEXING CODES 1161

where is a time and color demultiplexing matrix.
In the same spirit as the MMSE design for time multiplexing
(9), the MMSE design of time and color multiplexing codes can
be carried out by minimizing the MMSE

(19)

under the constraint that

(20)

The correlation matrix of the demultiplexed images can be
obtained during the camera calibration phase; see Section VI-B.
Concretely, we aim to solve the optimization problem

(21)

By comparison to straightforward time and color multiplexing,
i.e., and , the gain of optimal time and color
multiplexing is defined as

(22)

where is the noise covariance given by (17) with .
The objective function of problem (19) is highly non-convex.

Thus, directly handling this problem with a non-linear pro-
gramming method is subject to the risk of converging to poor
local optima, especially when the initial condition is given
far away from the global optima. Some approximation and
decomposition of problem (19) should be sought, with the hope
that the solution found is less-sensitive to initial condition and
that the subproblems can be convex and be easy to solve. In
the following, we reformulate and approximate problem (21),
shown at the bottom of the page, in such a way that the problem
can be easily handled by sequential convex programming
(SCP) and a 1-dimensional exhaustive search over a set of
finite samples, where each subproblem involved in the SCP
step is casted as a semi-definite programming (SDP) problem
that can be readily solved by any convex optimization solver.
We name the proposed method the Illumination Multiplexing
Codes (IMC) algorithm.

A. Illumination Multiplexing Codes (IMC) Algorithm

Problem (21) is unconstrained with respect to , and thus we
can first obtain a closed-form solution for , in terms of and
, as follows:

(23)

Substituting (23) into (21) yields

(24)

This problem, however, is still difficult to solve. To make the
problem easier we introduce the following approximation

(25)

where equality holds when all the eigenvalues of are iden-
tical, or is statistically uncorrelated; i.e., . In our
case, where is the correlation matrix of the single-light source
images , one may arrange the light source directions tomake
as close to as possible, thereby reducing the approxima-

tion error. A simple way is to adjust the directions of the illumi-
nation sources such that one illumination coverage region does
not overlap much with the others; i.e., for

is close to zero. One should also manage all the light
sources such that the single-light source images have the
same energy. This can be done by either varying the distances
between the light sources and the object to be illuminated, or the
power of light sources. As a rule of thumb, to make the approxi-
mation (25) tight, the light source directions should be arranged
as disparate as possible, and their lighting energies should be
roughly equal.
We now apply (25) to the objective function of problem (24)

and get

(26)

After which, substituting (26) into (24) yields the approximation
of problem (24):

(27)

Although problem (27) is already in a simplified form from (24)
by using (23) and (25), optimizing it is still difficult due to the
inverse operator in the objective function. Thus we adopt a di-
vide-and-conquer strategy for problem (27) via SCP with
fixed, and then we find the optimal through an exhaustive
search. The strategy is described in the following two subsec-
tions.
1) Subproblem of (27) With Fixed: If we suppose that the

variable is fixed to the constant value , then problem (27)
can be reformulated into the equivalent but alternative form:

(28)

where the linear matrix inequality constraint can be further
rewritten via Schur’s complement ([17], Th. 7.7.6, p. 472) as

(29)

By letting

(30)
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we can write problem (28) as

(31a)

(31b)

Solving problem (31), however, is difficult because (31a) is non-
convex in . Thus we seek local optimization methods that
approximate (31a) using a first-order Taylor series so as to make
problem (31) solvable by a sequence of convex problems. Ap-
plying Newton’s method [18] to the quadratic matrix equation

(32)

where is a continuously differen-
tiable function, will have the following recurrence:

(33a)

(33b)

(33c)

Here denotes a small change in , and denotes the esti-
mate of at iteration . The newly updated should be in
the constraint set . By replacing the equality constraint (31a)
with (33b) at each iteration , we can obtain the SDP formula-
tion,

(34)

This SDP problem can be efficiently solved by any convex op-
timization solver [19]. Note that problem (31) is handled by a
sequence of SDPs given by (34). In each iteration , problem
(34) is a local, linear approximation to problem (31). Once
is obtained at iteration , we update by (33c) and con-
tinue to solve problem (34) for . The complete SCP
for problem (31) is outlined in Algorithm 1. How we give the
initial to Algorithm 1 is discussed in Remark 3 in Section IV.
The iteration procedure will stop when the relative change in the
objective function is smaller than a preset threshold.
2) Exhaustive Search Over Various ’s: The remaining

problem is to determine the optimal total energy of the acti-
vated light sources . We apply a 1-dimensional exhaustive
search over finite samples of , say , where
we set given by (14) as an upper bound to account for
multiplexing saturation problems. After we obtain the optimal
value for , a solution of and the
time and color multiplexing matrix to problem (24) can be
found by

(35)

(36)

Finally, we summarize the IMC algorithm for problem (21)
in Algorithm 2. The IMC algorithm can be readily applied to
the MMSE design of time multiplexing codes only. The details
are given in Appendix A.

Algorithm 2: IMC algorithm for problem (21).

input: total energy of the multiplexing saturation value
beyond which the captured images become

saturated, the noise covariance matrix given
by (17), and the correlation matrix of illumination
sources .

obtain and by Algorithm 1 for .

compute and by (35), (36), and (23), respectively.

output: solution , and to problem (21).

3) Convergence Analysis of Algorithm 1: We now analyze
the convergence of Algorithm 1 in this subsection. Unlike
conventional sequential SDP [20] which applies Newton’s
method to solve the Karush-Kuhn-Tucker conditions of (31),
the proposed Algorithm 1 employs Newton’s method on the
non-convex constraint only. The local convergence
for this type of algorithm has been analyzed in [21], whose
results relate to the following nonconvex optimization problem,

(37)

where is non-linear and smooth on
its domain, and is a nonempty, closed, convex subset in .
The authors of [21] studied the iterative method

(38)
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for and showed that, under some contraction prop-
erties, if is a stationary point of (37) then within some neigh-
borhood of the sequence generated by (38) converges lin-
early to .
To connect our problem (31) to problem (37), we can define

with and , and view the proposed
method as a local procedure for solving problem (37) via the
iterative process in (38). Hence, the results of [21] suggest that
our method solves a sequence of problems (34) and converges
linearly to a stationary point of problem (31).

IV. IMC-LIKE ALGORITHM FOR MAX-SNR BASED TIME AND
COLOR MULTIPLEXING

This section presents the application of an IMC-like algo-
rithm to compute the max-SNR based time and color multi-
plexing codes. The algorithm’s development basically follows
the key steps in Section III. As has been discussed previously,
the max-SNR design is thought of as the MMSE code design
problem (21) with an extra constraint :

(39)

Note that the above max-SNR design (39) does not hinge on the
illumination correlation matrix , therefore no approximation
like the one performed in (25) for MMSE design is needed. To
make the IMC algorithm applicable to handling (39), we now
reformulate it as follows. By the Lagrange multiplier method
[22], we can obtain a closed-form solution of :

(40)

The details of how we derive (40) can be found in the
Appendix B. Substituting (40) into (39) yields

(41)

Compared to standard time and color multiplexing, i.e.,
and , the gain of time and color multiplexing associ-

ated with the max-SNR design is then computed as

(42)

Now we are faced with the question of solving problem (41).
Using tools similar to those presented in Section III.A, such as

TABLE I
COMPARISON BETWEEN MMSE AND MAX-SNR DESIGNS

the divide-and-conquer strategy and Schur’s complement, one
can obtain via fixed to

(43a)

(43b)

Again, (43a) is non-convex. Hence, we can apply Newton’s
method [18] to the constraint, thus granting us the following
sequential SDP formulation:

(44)

where is the current number of iterations. Putting the above
problem into an iterative SCP framework, we have the pseudo-
code of SCP for problem (43) in Algorithm 3. To do this, the ini-
tial should be feasible; thus the elements of are randomly
generated following a uniform distribution over , and they
are normalized to fall in . After applying Algorithm 3 to the
problem with various ’s, the solution terms and can be
found by (35) and (36), respectively. Both the detailed version
of the max-SNR design based time and color multiplexing codes
along with its application to time multiplexing can be found in
the short version of this paper [15].
We conclude this section with the following remarks, along

with Table I to summarize the pros and cons of the MMSE de-
sign and max-SNR design.
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Remark 1: The MMSE-based formulation and algorithm are
more general than those of the max-SNR design, and it has been
shown in our derivation that the former provides a multiplexing
gain no less than the latter. However, at each SCP iteration, the
MMSE design needs to solve problem (34) with
variables, while the max-SNR design tackles problem (44) with

unknowns. Since , we can infer that
the MMSE design problem size is bounded from below by the
problem size of the max-SNR design. Accordingly, computing
the multiplexing codes of the max-SNR design is more efficient
than doing so for the MMSE design, especially as the number
of multiplexed illuminations increases.
Remark 2: Compared to the max-SNR design which only

needs the noise covariance matrix for computing the multi-
plexing codes, the extra information we need for the MMSE de-
sign is the correlation matrix of illumination sources . More-
over, MMSE also needs the approximation (25), which can be
tight if the illumination sources are diverse enough, or the il-
lumination sources tend to be uncorrelated. As we will see in
simulations, even though there is some approximation error in
(25), the MMSE multiplexing codes still yield a multiplexing
gain larger than that of the max-SNR design.
Moreover, we discuss the algorithm initialization in the fol-

lowing remark.
Remark 3: Since the computational load of theMMSE design

is heavier than that of the max-SNR design, and the feasible set
of the max-SNR design is a subset of that of the MMSE design,
it is natural to use a max-SNR solution to initialize Algorithm 1.
This strategy can save a large amount of the computation time
of the MMSE design.V. COMPUTER SIMULATIONS

The multiplexing gain performance of the proposed IMC
algorithms based on the MMSE and max-SNR criteria will be
demonstrated for both time multiplexing and time and color
multiplexing in this section. To ease the ensuing presentation,
we label the proposed IMC algorithm for MMSE design as
IMC-MMSE, and we label that for the max-SNR design as
IMC-mSNR.
In the following simulation we used a pink piglet as the il-

luminated object; see Fig. 2(a). We then calculated the material
color of the object as required by time and color multiplexing.
Suppose that the RGB values of the acquired color image are

. The material colors can
then be calculated by

. Fig. 2(b) shows the synthetic map of the
material colors. In addition, we collected single-light
source illuminations as the ground-truth , as displayed in
Fig. 2(c). Under these illumination settings, the approximation
error in (25) is . Note
that the correlation matrix of illumination sources (to be used
in IMC-MMSE) is now assumed to be known; exactly how we
practically estimate in real experiments will be detailed in
Section VI-A.

A. Time Multiplexing

We show results with time multiplexing in order to make a
fair comparison with Ratner’s method [10], a state-of-the-art
method based on max-SNR design used for time multiplexing.
There are or 24 measurements allowed to be captured

Fig. 2. (a) The illuminated object, (b) the calculated material colors of the ob-
ject, and (c) the twelve single-light source illuminations.

by using time multiplexing. The two noise parameters given by
(3) are set to and . Fig. 3(a) shows
themultiplexing gain performance of the proposed IMC-MMSE
and IMC-mSNR algorithms, as well as the Ratner’s method
[10], for various ’s. One can see that IMC-MMSE achieves a
significantly higher multiplexing gain than the max-SNR based
methods; i.e., IMC-mSNR and Ratner’s method, for both
and . IMC-mSNR outperforms Ratner’s method5 for

and achieves comparable performance with Ratner’s
method for . Fig. 4(a) shows the time multiplexing
codes yielded by the IMC-MMSE method for and

. We see that the time multiplexing codes are rather
diverse. Moreover, the performance improvement can be seen
obviously as the number of measurements increases, regard-
less of the value of . All the above observations immediately
suggest that if someone demands a high-quality image under
a single light source condition, the solution is to acquire more
measurements using the MMSE-based multiplexing codes. The
proposed IMC-MMSE method offers such multiplexing codes!

B. Time and Color Multiplexing

We now consider time and color multiplexing where there
are and 8 RGB multiplexed images. Although we use
a small number of measurements than the time multiplexing in
the last subsection, or 8 RGB multiplexed images are
equivalent to or 24 monochrome multiplexed images,
respectively. The RGB noise parameters given by (17) are
set to , and

where denotes the common ratio of the sensor noise
power and photon noise power for the RGB channels. For noise
correlation across RGB channels, we use an affine function6 of
; i.e., for all , with

and .
Fig. 3(b) shows the time and color multiplexing gain of

the proposed IMC-MMSE and IMC-mSNR methods for
and various ’s. It can be observed that the

multiplexing gains of both methods improve as the number of
measurements increases, and IMC-MMSE achieves a much

5Ratner’s method was developed for the determined multiplexing system
. For the case of , we concatenate the same Ratner multi-

plexing codes of twice to serve as the multiplexing matrix, and we
use this for a baseline comparison.
6This kind of affine function applies to the real scenarios in our experiments;

see Section VI.
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Fig. 3. (a) Time multiplexing for and 24 over various ’s. (b) Time and color multiplexing for and 8 over various ’s. The symbol ‘ ’ denotes
the maximum multiplexing gain for a specific setting, and this informs us of the optimal .

Fig. 4. (a) Time multiplexing codes yielded by the proposed IMC-MMSE for and . (b) Time and color multiplexing codes yielded by the
proposed IMC-MMSE for and . [Top] Shown from the left to the right are the time multiplexing codes for the RGB channels,
respectively; [Bottom] the composed RGB multiplexing patterns. For the time multiplexing codes of any given color channel, fully bright segments mean the
codes take a value of 1 (specifying full illumination), whereas fully dark segments indicate a coded value of 0 (specifying no illumination).

higher multiplexing gain than IMC-mSNR. Fig. 4(b) displays
the time and color multiplexing codes and the composed RGB
multiplexing patterns yielded by the IMC-MMSE method for

and . One can see that the time multiplexing
codes for each RGB channel are diverse, and the composed
RGB multiplexing patterns are not limited to some specific
colors.
To make more sense of how multiplexing really improves

image quality, we synthetically generate the multiplexed im-
ages by following (16) with the calculated multiplexing matrix
of , and we subsequently de-multiplex them to infer the illu-
mination sources. Fig. 5 displays the de-multiplexed images of
IMC-MMSE, IMC-mSNR and the conventional illuminations
(i.e., and ). One can clearly see that the
quality of the images demultiplexed by IMC-MMSE and IMC-

mSNR is greatly enhanced compared to the conventional illu-
minations, with IMC-MMSE making the largest improvement.

VI. EXPERIMENTS

We use object illumination to demonstrate the effective-
ness of the proposed time and color multiplexing methods,
IMC-MMSE and IMC-mSNR. A sketch of the illumination
multiplexing system is shown in Fig. 6(a). Two PC-controlled
BENQ MX761 projectors create colored illumination pat-
terns of lit segments, shown in Fig. 6(b), on two
diffuse-white walls straddling the corner of a room. Light
reflected by these lit patches acted as separate light sources
illuminating the placed object. Two kinds of objects were
considered: Lambertian objects and shiny (non-Lambertian)
objects; see Fig. 7. While the illumination superposition model
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Fig. 5. Three time and color demultiplexed images (#3, #6, #12) using the ma-
trix of the optimal obtained by (a) IMC-MMSE , (b) IMC-MMSE

, (c) IMC-mSNR , (d) IMC-mSNR . (e) The con-
ventional illuminations; i.e., with .

Fig. 6. (a) Experimental setup, and (b) the illumination patterns.

(15) should hold only for Lambertian objects, use of the shiny
objects helps to evaluate the limits of the proposed methods.
A FUJINON FL2G13S2C-C camera was used to capture the
multiplexed images, and its exposure time and amplifier gain
were set to 100 msec and 0 dB, respectively.

Fig. 7. The objects used in the experiments. (a) Lambertian objects, and (b) the
shiny (non-Lambertian) objects.

A. Projector Calibration

Two issues must be considered during the camera calibration.
The first is the nonlinear response of the camera readout as the
intensity of the light source increases linearly. The usual step
for fixing this behavior is to enable -correction mode in the
camera, but this is not advised for multiplexing [4]. Instead, we
compensate this nonlinearity by assigning nonlinear reference
values to the hard-coded light source intensities such that the
illuminations measured by the camera are linear in light inten-
sity. Specifically, we use the nonlinear function,
where and , to transform the linear input

to a reference value for the projector to dis-
play the appropriate strength of lighting. The second issue is the
spectral overlap among the camera’s RGB channels. Since the
spectral bands of the red and blue channels are almost disjoint
whereas the green channel is overlapped with both the red and
blue channels, we therefore only use the red and blue channels
for time and color multiplexing.

B. Estimation of Noise Covariance and Single-Light Source
Covariance

When designing the optimal time and color multiplexing
codes, the measurement noise variances and its
cross-correlation , as well as photon noise variances

and its cross-correlation play a central role. We
follow the method reported in [10] to estimate the variances of
the photon noise and sensor noise for the red and blue channels
of the camera, and the measured noise variances as a function
of is shown in Fig. 8. It is clear that the measured noise
variances are an affine function of . Using a simple line fitting,
the resultant variances of the sensor noise are and

, while the resultant variances of the photon noise
are and . In addition, the parameters
of the noise correlation between the red and blue channels are

and .
A pre-scan of the object under white light conditions is re-

quired in order to estimate the RGBmaterial colors of the object.
The synthetic map of the material colors is shown in Fig. 9.With
all the noise parameters and the material colors, we can easily
compute from (17) the covariance matrix for . Due
to the statistical independence between the illumination sources
and the noise, the correlation matrix of illumination sources is
then computed by , where is the
conventional multiplexed measurements (16) with and

, after re-weighted by the material colors.
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Fig. 8. Noise calibration as a function of . (a) Noise variance in the red channel, and (b) in the blue channel. (c) Noise correlation between the red and blue
channels.

Fig. 9. The synthetic map of the objects’ calculated material colors. (a) Lam-
bertian objects, and (b) shiny (non-Lambertian) objects.

C. Object Illuminations

Just as the noise variances, covariance of single-source illu-
minations, and the material colors were acquired in the above
subsections, the time and color multiplexing codes, either based
on MMSE or max-SNR, can be easily computed by using the
proposed methods. We gathered and 24 time and
color multiplexed measurements for the objects used in the
experiment, and performed demultiplexing from the mul-
tiplexed images. Since the demultiplexed single-light source
illuminations do not contain any color information,
we incorporate the material colors into to obtain
the RGB single-light source illuminations, where the intensity
of the th illumination in the RGB channels are written as

. The results of different objects
are presented in the following subsections.
1) Lambertian Objects: The Lambertian objects of this

experiment are a pink piglet and a blue styrofoam brick with
four holes. Fig. 10(a) shows the time and color multiplexing
gain for the MMSE-based and max-SNR based multi-
plexed images with and 24. In this experimental
setting, IMC-MMSE yields a greater multiplexing gain than
IMC-mSNR for any given , and using multiplexed
images more than doubled the multiplexing gain improvement
in comparison to using . Fig. 12 shows the 14th and
17th RGB single-light source illuminations obtained from the

and 24 time and color multiplexed images and from
the trivial illumination , respectively. One
can clearly see that the quality of the MMSE-based demulti-
plexed images, in terms of their visual appearance, is better

than that of the max-SNR based demultiplexed images, and the
quality of these demultiplexed images improve as the number
of time and color multiplexing measurements increases.
Also noticeable are some artifacts around the edges of the holes
in the blue styrofoam object in the max-SNR based demul-
tiplexed images [Fig. 12(c)–(d)], whereas the MMSE-based
demultiplexed images do not have such a phenomenon. For a
quantitative analysis, we computed the variances of the signals
within a 100 100 pixel square in the black background of
these demultiplexed images. These values, referred to as the
noise variance, were calculated to be 0.4575, 0.5416, 0.7128,
1.0098, and 1.7221 for IMC-MMSE , IMC-MMSE

, IMC-mSNR , IMC-mSNR ,
and the conventional illumination, respectively. This shows the
benefits of using MMSE-based time and color multiplexing as
well as a greater number of measurements.
2) Non-Lambertian Objects: Now, we tackle a more chal-

lenging case, illuminating shiny cups for which the illumination
superposition model (15) may not be satisfied. Fig. 10(b) shows
the time and color multiplexing gain for the MMSE-based
and max-SNR based multiplexed images, with and 24.
The observation is similar to the Lambertian objects: the multi-
plexing gain improves when the number of multiplexed images
increases, but the performance gap between the MMSE de-

sign and the max-SNR design is larger than that of the Lam-
bertian objects [Fig. 10(a)]. Fig. 12 shows the 3rd and 23rd
RGB single-light source illuminations obtained from both the

and 24 time and color multiplexed images and from the
trivial illumination , respectively. Visually
one observes that the quality of theMMSE-based demultiplexed
images is higher than that of the max-SNR based demultiplexed
images, though both types improve the quality as increases.
Moreover, we computed the noise variance of these demulti-
plexed images for a qualitative comparison, and they are 0.0709,
0.0999, 0.4416, 0.6624, and 1.2321 for IMC-MMSE ,
IMC-MMSE , IMC-mSNR , IMC-mSNR

, and the conventional illumination, respectively.
This again confirms the merits of using an MMSE-based time
and color multiplexing, along with a greater number of mea-
surements.
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Fig. 10. Time and color multiplexing for and 24 over various ’s. (a) Lambertian objects. (b) shiny (non-Lambertian) objects. The symbol ‘ ’ denotes
the maximum multiplexing gain for a specific setting, and this informs us of the optimal

Fig. 11. Two of the time and color demultiplexed images (#14, #17) using the
matrix of obtained by (a) IMC-MMSE , (b) IMC-MMSE
, (c) IMC-mSNR , (d) IMC-mSNR . (e) Conventional

illuminations; i.e., and .

VII. CONCLUSION

We have formulated an MMSE code design problem for time
and color multiplexing with , which can be thought
of as a generalization of the conventional max-SNR code design
problem. We have handled the formulated MMSE problem by
proposing the IMC algorithm, which includes two main com-
ponents: iterative SCP and a 1-dimensional exhaustive search.

Fig. 12. Two of the time and color demultiplexed images (#3, #23) using the
matrix of the optimal obtained by (a) IMC-MMSE , (b) IMC-
MMSE , (c) IMC-mSNR , (d) IMC-mSNR .
(e) Conventional illuminations; i.e., and .

Not only can the proposed IMC algorithm compute the MMSE
based time and color multiplexing codes, but it can also be



CHAN et al.: MMSE DESIGN OF TIME AND COLOR MULTIPLEXING CODES 1169

applied to MMSE-based time multiplexing, max-SNR based
time multiplexing, and both time and color multiplexing. We
anticipate that it will open a new door for a general setting
(without the limitation of ) in MMSE-based, max-SNR
based, or time and color multiplexing. As deduced from the sim-
ulations and experimental results, we summarize the primary
merits of the proposed formulations and methods into the fol-
lowing points:
• The MMSE-based method outperforms the max-SNR
method in terms of multiplexing gain.

• The multiplexing gains of MMSE-based and max-SNR
based methods significantly increase as increases.

• Only measurements are required in time and color
multiplexing for achieving similar or even better perfor-
mance to the case when only time multiplexing is used.

• The above advantages not only hold true for Lambertian
objects, but also for non-Lambertian objects.

These unique results are hardly discussed in the existing works
[1], [2], [4], [9], [10].

APPENDIX

A. IMC Algorithm for MMSE Based Time Multiplexing

The methodology developed above can also be applied to
time multiplexing. Recall that the MMSE design of time multi-
plexing codes is given by (9), where and are now of size

rather than . Following derivations similar to
those in (21), (19), (23) and (24), the design of
turns out to solve the following optimization problem

(45)

The optimal demultiplexing matrix is expressed as a function of
and , given by

(46)

Likewise, applying the approximation (25) of the objective
function of problem (45) one can easily come up with

(47)

Since this problem has an identical structure to (27), following
the formulations in Section III-A, one can easily apply Algo-
rithm 1 to solve problem (47).

B. Lagrangian Method for Problem (39)

Problem (39) can be alternatively written in the following
equivalent form:

(48)

The Lagrangian associated with the inner problem of (48) is
expressed as

(49)

where denotes the Lagrange multiplier. Setting the
partial derivatives of with respect to and to zero,
respectively, gives rise to

(50)

(51)

By (50) and (51), we can easily come up with

(52)

Hence, substituting (52) into (50) yields
.
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